TCEQ Interoffice Memorandum **To:** Tony Walker Director, TCEQ Region 4, Dallas/Fort Worth Alyssa Taylor Special Assistant to the Regional Director, TCEQ Region 4, Dallas/Fort Worth From: Jessica Myers, Ph.D. Toxicology Division, Office of the Executive Director **Date:** November 25, 2014 **Subject:** Toxicological Evaluation of Results from an Ambient Air Sample for Volatile Organic Compounds Collected Downwind of the Cowtown Pipeline L.P., Lake Arlington Compressor Station (Latitude 32.72831, Longitude -97.21019) in Arlington, Tarrant County, Texas Sample Collected on October 14, 2014, Request Number 1410022 (Lab Sample 1410022-001) ## **Key Points** • Reported concentrations of target volatile organic compounds (VOCs) were either not detected or were detected below levels of short-term health and/or welfare concern. ## **Background** On October 14, 2014, a Texas Commission on Environmental Quality (TCEQ) Region 4 air investigator collected a 30-minute canister sample (Lab Sample 1410022-001) downwind of the Cowtown Pipeline L.P., Lake Arlington Compressor Station in Arlington, Tarrant County, Texas (Latitude 32.72831, Longitude -97.21019). The sample was collected in response to a citizen's complaint. The investigator experienced a very light hydrocarbon odor but no health effects while sampling. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the ambient temperature was 74°F with a relative humidity of 30.5%, and winds were from the northwest (320°) at 6-11 miles per hour. The sampling site was less than 100 feet from the possible emission source (multiple sources). The nearest location where the public could have access was between 101 and 300 feet from the possible emission source. The sample was sent to the TCEQ laboratory in Austin, Texas, and analyzed for a range of VOCs. The list of the target analytes that were evaluated in this review is provided in Attachment A. The VOC concentrations were reported in parts per billion by volume (ppbv) (Attachment B and Table 1). Please note that the available canister technology and analysis method cannot capture and/or analyze for all chemicals. Tony Walker et al. Page 2 November 25, 2014 #### **Results and Evaluation** Reported VOC concentrations were compared to TCEQ's short-term health- and/or welfare-based air monitoring comparison values (AMCVs) (Table 1). Short-term AMCVs are guidelines used to evaluate ambient concentrations of a chemical in air and to determine its potential to result in adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are set well below levels at which adverse health effects are reported in the scientific literature. If a chemical concentration in ambient air is less than its comparison value, no adverse health effects are expected to occur. If a chemical concentration exceeds its comparison value it does not necessarily mean that adverse effects will occur, but rather that further evaluation is warranted. All of the 84 VOCs were either not detected or were detected below their respective short-term AMCVs. Exposure to levels of VOCs measured in this sample would not be expected to cause short-term adverse health effects, adverse vegetative effects, or odors. Please call me at (512) 239-3444 if you have any questions regarding this evaluation. Tony Walker et al. Page 3 November 25, 2014 #### Attachment A ### **List of Target Analytes for Canister Samples** ethane ethylene acetylene propane propylene dichlorodifluoromethane methyl chloride isobutane vinyl chloride 1-butene 1.3-butadiene n-butane t-2-butene bromomethane c-2-butene 3-methyl-1-butene isopentane trichlorofluoromethane 1-pentene n-pentane isoprene t-2-pentene 1,1-dichloroethylene c-2-pentene methylene chloride 2-methyl-2-butene 2,2-dimethylbutane cyclopentene 4-methyl-1-pentene 1,1-dichloroethane cyclopentane 2,3-dimethylbutane 2-methylpentane 3-methylpentane 2-methyl-1-pentene + 1-hexene n-hexane chloroform t-2-hexene c-2-hexene 1.2-dichloroethane methylcyclopentane 2,4-dimethylpentane 1,1,1-trichloroethane benzene carbon tetrachloride cyclohexane 2-methylhexane 2,3-dimethylpentane 3-methylhexane 1,2-dichloropropane trichloroethylene 2,2,4-trimethylpentane 2-chloropentane n-heptane c-1,3-dichloropropylene methylcyclohexane t-1,3-dichloropropylene 1,1,2-trichloroethane 2,3,4-trimethylpentane toluene 2-methylheptane 3-methylheptane 1.2-dibromoethane n-octane tetrachloroethylene chlorobenzene ethylbenzene m & p-xylene styrene 1,1,2,2-tetrachloroethane o-xylene n-nonane isopropylbenzene n-propylbenzene m-ethyltoluene p-ethyltoluene 1,3,5-trimethylbenzene o-ethyltoluene 1,2,4-trimethylbenzene n-decane 1,2,3-trimethylbenzene m-diethylbenzene p-diethylbenzene n-undecane Tony Walker et al. Page 4 November 25, 2014 ## **Attachment B** 15/7/2014 #### Texas Commission on Environmental Quality Laboratory and Quality Assurance Section P.O. Box 13087, MC-165 Austin, Texas 78711-3087 (512) 239-1716 # Laboratory Analysis Results | | Number: 1410022 | | | |--|-------------------------|---------------|---| | Request Lead:Jaydeep Patel
Project(s): Barnett Shale | Region: T04 | Date Rec | cived: 10/22/2014 | | Facility(ies) Sampled | City | County | Facility Type | | Cowtown Pipeline LP, Lake Arlington Compressor Stat | Arlington | Tarrant | | | Sample(s) Received | | | | | Field ID Number: N0520-101414 Laboratory Sampling Site: Comments: Canister N0520 was used to collect a 30-min Requested Laboratory Procedure(s): | | led: 10/14/14 | mpled by: Glendora Lopez
14:27:00 Valid Sample: Ye | | Analysis: AP001VOC Determination of VOC Canisters by GC/MS Using Modi | fied Method TO-15 | | | | Please note that this analytical technique is not adverse health effects. For questions on the ana (512) 239-1716. For an update on the health eff Division at (512) 239-1795. | lytical procedures plea | se contact t | he laboratory manager at | | Analyst: <u>Argathou</u>
Anita Mathow | | Date: _//_ | 1-114 | | Laboratory Manager: Jaydee Putel | 4 | Date: 41 | 13114 | #### Laboratory Analysis Results Request Number: 1410022 Analysis Code: AP001VOC | Note: Results are reported in unit | a to ppor | | | 000 00 | | | | | | | |------------------------------------|-----------|------|-----|------------------|-------------------|----------|-----|-----|------------------|---------| | Lab ID | | | | 022-001 | | | | | | | | Field ID | | | | 0-101414 | | - | | | | | | Conister ID | | | N | 10520 | | | | | | | | Compound | Conc. | SDL | SQL | Analysis
Date | Flags** | Conc. | SDL | SQL | Analysis
Date | Flags** | | sthane | 380 | 5.1 | 12 | 11/4/2014 | T,D2 | | | | | | | sthylene | 0.86 | 1.0 | 2.4 | 10/30/2014 | J,T,D1 | | | | | | | cetylene | ND | 1.0 | 2.4 | 10/30/2014 | T,DI | | | | | | | ropane | 16 | 1.0 | 2.4 | 10/30/2014 | T,D1 | | | | | | | propylene | ND | 1.0 | 2.4 | 10/30/2014 | T,D1 | | | | | | | dichlorodifluoromethane | 0.51 | 0.40 | 1.2 | 10/30/2014 | L,D1 | | | | | | | nethyl chloride | 0.49 | 0.40 | 1.2 | 10/30/2014 | L ₀ DI | | | | | | | sobutane | 0.74 | 0.46 | 2.4 | 10/30/2014 | L,D1 | | - | | | | | vinyl chloride | ND | 0.34 | 1.2 | 10/30/2014 | DI | | | | | | | L-butene | ND | 0.40 | 1.2 | 10/30/2014 | Dl | 1 | | | | | | ,3-butadiene | ND | 0.54 | 1.2 | 10/30/2014 | Dl | | | | | | | r-butane | 1,3 | 0.40 | 2.4 | 10/30/2014 | L ₂ D1 | | | | | | | -2-butene | ND | 0,36 | 1,2 | 10/30/2014 | Dl | | | | | | | comomethane | ND | 0.54 | 1,2 | 10/30/2014 | DI | 1 | | | [| | | -2-butono | ND | 0.54 | 1.2 | 10/30/2014 | Dt | | | | | | | -methyl-1-butene | ND | 0.46 | 1.2 | 10/30/2014 | DI | | | | | | | sopentane | 0.34 | 0.54 | 4.8 | 10/30/2014 | J,D1 | | | | i i | | | richlorofluoromethane | 0.26 | 0.58 | 1.2 | 10/30/2014 | J,D1 | | | , | | | | 1-pentene | ND | 0.54 | 1.2 | 10/30/2014 | D1 | | | | | | | n-pentane | ND | 0.54 | 4.8 | 10/30/2014 | D1 | | | | | | | soprene | 0.08 | 0.54 | 1.2 | 10/30/2014 | J,D1 | 1 | | | | | | -2-pentene | ND | 0.54 | 2.4 | 10/30/2014 | DI | 1 | | _ | | | | 1,1-dichloroethylene | ND | 0.36 | 1.2 | 10/30/2014 | DI | | | | | | | -2-pentene | ND | 0.50 | 2.4 | 10/30/2014 | D1 | + | | | | | | methylene chloride | 0.06 | 0.28 | 1.2 | 10/30/2014 | J,D1 | | - | | | | | 2-mothyl-2-butene | ND | 0.46 | 1.2 | 10/30/2014 | D1 | - | - | - | | | | 2.2-dimethylbutane | ND | 0.42 | 1.2 | 10/30/2014 | DI | 1 | | | | | | cyclopentene | ND | 0.40 | 1.2 | 10/30/2014 | DI | + | | | | | | 4-methyl-1-pentane | ND | 0.44 | 2.4 | 10/38/2014 | DI | + | | | | | | 1.1-dichlorocthme | ND | 0.38 | 1.2 | 10/30/2014 | D1 | + | - | | | | | cyclopentane | ND | 0.54 | 1.2 | 10/30/2014 | . D1 | _ | | - | | | | 2.3-dimethylbutane | ND | 0.56 | 2.4 | 10/30/2014 | D1 | + | _ | | | | | 2-methylpentane | 0.06 | 0.54 | 1.2 | 10/30/2014 | J,DI | | _ | | | | | 3-methylpentane | 0.04 | 0.46 | 1.2 | 10/30/2014 | J,DI | | _ | | - | | | 2-methyl-1-pentene + 1-hexene | ND | 0.40 | 4.8 | 10/30/2014 | DI | | - | | | | | n-hexane | 0.05 | 0.40 | 2.4 | 10/30/2014 | J.DI | - | | | | | | chloroform | 0.02 | 0.42 | 1.2 | 10/30/2014 | J.D1 | - | | | | | | (-2-hexene | ND | 0.54 | 2.4 | 10/30/2014 | DI | | | | | | | | ND | 0.54 | 2.4 | 10/30/2014 | DI | - | | | | | | o-2-hexene | ND | 0.54 | 1.2 | 10/30/2014 | DI | | | | - | | | 1,2-dichloroethane | ND | 0.54 | 2.4 | 10/30/2014 | DI | - | - | | | | | methylcyclopertane | | 0.54 | 2.4 | 10/30/2014 | DI | - | | | - | | | 2,4-dimethylpentane | ND | 0.54 | 1.2 | 10/30/2014 | DI | - | - | - | | | | 1,1,1-trichloroethate | ND | | | | DI | - | | | | | | benzene | 1.8 | 0.54 | 1.2 | 10/30/2014 | | | | - | | | | carbon tetrachloride | 0,10 | 0.54 | 1.2 | 10/30/2014 | J,D1 | | | | | | | cyclohexane | 30.0 | 0.48 | 1.2 | 10/30/2014 | J,Dt | | | - | | | | 2-methylhexane | ND ND | 0.54 | 1.2 | 10/30/2014 | Di | | | | | | #### Laboratory Analysis Results Request Number: 1410022 Analysis Code: AP001VOC | Note: Results are reported in | 1 | | 41 | | | | | - | | | |-------------------------------|-------|-------------|------|------------------|-------------------|-------|-----|-----|------------------|---------| | Lab ID | | 1410022-001 | | | | | | | | | | Compound | Conc. | SDL | SQL- | Analysis
Date | Flags** | Cone, | SDL | SQL | Analysis
Date | Flags** | | 3-methylhexane | 0.01 | 0.40 | 1.2 | 10/30/2014 | 1'Df | | | | l | | | 1,2-dichloropropane | ND | 0.34 | 1.2 | 10/30/2014 | DI | | | | | | | trichlaroethylene | ND | 0.58 | 1.2 | 10/30/2014 | DI | | L | L | | | | 2,2,4-trimethylpentane | ND | 0.48 | 1.2 | 10/30/2014 | DI | | | | | | | 2-chloropentane | ND | 0.54 | 1.2 | 10/30/2014 | DI | | | | | | | t-heptane | 0.03 | 0.50 | 2.4 | 10/30/2014 | 1,DI | | | | | | | c-1,3-dichloropropylene | ND | 0.40 | 1.2 | 10/30/2014 | DI | | | | | | | methyloyolohexane | 0.04 | 0.52 | 2.4 | 10/30/2014 | J,D1 | | | | | | | t-1,3-dichloropropylene | ND | 0.40 | 1.2 | 10/30/2014 | DI | | | | | | | 1,1,2-trichloroethane | ND | 0.42 | 1,2 | 10/30/2014 | D1 | | | | | | | 2,3,4-trimethylpentane | 0.01 | 0.48 | 2.4 | 10/30/2014 | J,D1 | | | | | | | toluene | 0.82 | 0.54 | 1.2 | 10/30/2014 | L,D1 | | | | | | | 2-methylheptane | ND | 0.40 | 2.4 | 10/30/2014 | D1 | | | | | | | 3-methylhoptano | ND | 0.46 | 2.4 | 10/30/2014 | D1 | | | | | | | 1,2-dibromoethane | ND | 0.40 | 1,2 | 10/30/2014 | D1 | | | | | | | n-octane | 0.01 | 0.38 | 2.4 | 10/30/2014 | J,D1 | | | | | | | tetrachforoethylene | 0.01 | 0.48 | 1.2 | 10/30/2014 | J,D1 | | | | | | | chiarobenzene | ND | 0.54 | 1.2 | 10/30/2014 | D1 | | | | | | | othy/beazene | 1.1 | 0.54 | 2.4 | 10/30/2014 | 1,D1 | 1 . | | | | | | m & p-xylene | 3.6 | 0.54 | 4.8 | 10/30/2014 | L,D1 | 1 | | | | | | styrene | ND | 0.54 | 2.4 | 10/30/2014 | D1 | 1 | | | | | | 1,1,2,2-tetrachloroethane | ND | 0.40 | 1.2 | 10/30/2014 | D1 | | | | | | | o-xylene | 1.4 | 0.54 | 2.4 | 10/30/2014 | L ₂ DI | | | | | | | n-nonine | ND | 0.44 | 1.2 | 10/38/2014 | Ðl | | | | | | | isopropylhetizene | ND | 0.48 | 1.2 | 10/30/2014 | D1 | | | | | | | n-propylbenzene | 0.02 | 0.54 | 1.2 | 10/30/2014 | 1,D1 | | | | | | | m-ethyltolnene | 0,06 | 0.22 | 1.2 | 10/30/2014 | I,DI | | | | | | | p-ethyltoluene | 0.04 | 0.32 | 2.4 | 10/30/2014 | J,DI | | | | | | | 1,3,5-trimethylbenzene | 0.02 | 0.50 | 2.4 | 10/30/2014 | 7,D1 | | | | | | | o-ethyltolnene | ND | 0.26 | 2.4 | 10/30/2014 | Di | | | | | | | 1,2,4-trimethylbenzene | 0.07 | 0.54 | 1.2 | 10/30/2014 | J,D1 | | | | | | | n-decane | ND | 0.54 | 2.4 | 10/30/2014 | D1 | | | | | | | 1,2,3-trimothylbenzene | ND | 0.54 | 1,2 | 10/30/2014 | D1 | | | | | | | m-diethylbenzone | ND | 0.54 | 2.4 | 10/30/2014 | D1 | | | | | | | p-diethylbenzene | ND | 0.54 | 1.2 | 10/30/2014 | . D1 | | | | | | | n-undecane | ND | 0.54 | 2.4 | 10/30/2014 | ĎI | - | | | | | #### Laboratory Analysis Results Request Number: 1410022 Analysis Code: AP001VOC #### Qualifier Notes: - ND not detected - rul not desected NQ concentration can not be quantified due to possible interferences or coclutions. SDL Sample Detection Limit (Limit of Detection adjusted for dilutions). SQL Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). BNV lavalid. - INV INVAINA. 1. Reported concentration is below SDL. 1. Reported concentration is at or above the SDL and is below the lower limit of quantitation. 1. Reported concentration exceeds the upper limit of instrument culibration. - B Reported concentration exceeds the upper limit of instrument cultivation. M Result modified from previous result. T Data was not confirmed by a confirmational analysis. Compound and/or results is tentatively identified. F Established neceptance criteria was not med due to factors outside the laboratory's centrel. H Not all associated hold time specifications were met. Data may be biased. C Sample received with a missing or incomplete chain of custody. I Sample received without a logible unique identifier. G Sample received without a logible unique identifier. U Sample received with insufficient sample volume. W Sample received with insufficient preservation. Quality control notes for AP001 VOC samples. - D1-Sample concentration was calculated using a dilution factor of 4.02. - D2-Sample concentration was calculated using a dilution factor of 20.23. TCEQ laboratory customer support may be reached at Jaydeep.Patel@tceq.texas.gov The TCEQ is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans With Disabilities Act, this document may be requested in alternate formats by contacting the TCEQ at (512) 239-0010, (Fax 512-239 -0056), or 1-800-RELAY-TX (TDD), or by writing P.O. Box 13087, Austin, Texas 78711-3087. Table 1. Comparison of Monitored Concentrations in Lab Sample 1410022-001 to TCEQ Short-Term AMCVs | Lab Sample ID | 1410022-001 | | | | | | |-----------------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 1,1,1-Trichloroethane | 380,000 | 1,700 | 1.2 | ND | D1 | 0.52 | | 1,1,2,2-Tetrachloroethane | 7,300 | 10 | 1.2 | ND | D1 | 0.4 | | 1,1,2-Trichloroethane | Not Available | 100 | 1.2 | ND | D1 | 0.42 | | 1,1-Dichloroethane | Not Available | 1,000 | 1.2 | ND | D1 | 0.38 | | 1,1-Dichloroethylene | Not Available | 180 | 1.2 | ND | D1 | 0.36 | | 1,2,3-Trimethylbenzene | Not Available | 250 | 1.2 | ND | D1 | 0.54 | | 1,2,4-Trimethylbenzene | 140 | 250 | 1.2 | 0.07 | J,D1 | 0.54 | | 1,2-Dibromoethane | Not Available | 0.5 | 1.2 | ND | D1 | 0.4 | | 1,2-Dichloroethane | 6,000 | 40 | 1.2 | ND | D1 | 0.54 | | 1,2-Dichloropropane | 250 | 100 | 1.2 | ND | D1 | 0.34 | | 1,3,5-Trimethylbenzene | Not Available | 250 | 2.4 | 0.02 | J,D1 | 0.5 | | 1,3-Butadiene | 230 | 1,700 | 1.2 | ND | D1 | 0.54 | | 1-Butene | 360 | 27,000 | 1.2 | ND | D1 | 0.4 | | 1-Pentene | 100 | 2,600 | 1.2 | ND | D1 | 0.54 | | 2,2,4-Trimethylpentane | 670 | 750 | 1.2 | ND | D1 | 0.48 | | 2,2-Dimethylbutane (Neohexane) | Not Available | 1,000 | 1.2 | ND | D1 | 0.42 | | 2,3,4-Trimethylpentane | Not Available | 750 | 2.4 | 0.01 | J,D1 | 0.48 | | 2,3-Dimethylbutane | 420 | 990 | 2.4 | ND | D1 | 0.56 | | 2,3-Dimethylpentane | 4,500 | 850 | 1.2 | ND | D1 | 0.52 | | 2,4-Dimethylpentane | 940 | 850 | 2.4 | ND | D1 | 0.54 | | 2-Chloropentane (as chloroethane) | Not Available | 240 | 1.2 | ND | D1 | 0.54 | | 2-Methyl-1-Pentene +1-Hexene | 140 | 500 | 4.8 | ND | D1 | 0.4 | | 2-Methyl-2-Butene | Not Available | 2,600 | 1.2 | ND | D1 | 0.46 | | 2-Methylheptane | 110 | 750 | 2.4 | ND | D1 | 0.4 | | 2-Methylhexane | 420 | 750 | 1.2 | ND | D1 | 0.54 | Tony Walker et al. Page 9 November 25, 2014 | Lab Sample ID | 1410022-001 | | | | | | |---------------------------------|----------------------------------|--|----------------------------|------------------------------------|--------|----------------------------| | Compound | Odor AMCV
(ppb _v) | Short-Term Health AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | 2-Methylpentane (Isohexane) | 7,000 | 850 | 1.2 | 0.06 | J,D1 | 0.54 | | 3-Methyl-1-Butene | 250 | 8,000 | 1.2 | ND | D1 | 0.46 | | 3-Methylheptane | 1,500 | 750 | 2.4 | ND | D1 | 0.46 | | 3-Methylhexane | 840 | 750 | 1.2 | 0.01 | J,D1 | 0.4 | | 3-Methylpentane | 8,900 | 1,000 | 1.2 | 0.04 | J,D1 | 0.46 | | 4-Methyl-1-Pentene (as hexene) | 140 | 500 | 2.4 | ND | D1 | 0.44 | | Acetylene | Not Available | 25,000 | 2.4 | ND | T,D1 | 1 | | Benzene | 2,700 | 180 | 1.2 | 1.8 | D1 | 0.54 | | Bromomethane (methyl bromide) | Not Available | 30 | 1.2 | ND | D1 | 0.54 | | c-1,3-Dichloropropylene | Not Available | 10 | 1.2 | ND | D1 | 0.4 | | c-2-Butene | 2,100 | 15,000 | 1.2 | ND | D1 | 0.54 | | c-2-Hexene | 140 | 500 | 2.4 | ND | D1 | 0.54 | | c-2-Pentene | Not Available | 2,600 | 2.4 | ND | D1 | 0.5 | | Carbon Tetrachloride | 4,600 | 20 | 1.2 | 0.1 | J,D1 | 0.54 | | Chlorobenzene (phenyl chloride) | 1,300 | 100 | 1.2 | ND | D1 | 0.54 | | Chloroform (trichloromethane) | 3,800 | 20 | 1.2 | 0.02 | J,D1 | 0.42 | | Cyclohexane | 2,500 | 1,000 | 1.2 | 0.08 | J,D1 | 0.48 | | Cyclopentane | Not Available | 1,200 | 1.2 | ND | D1 | 0.54 | | Cyclopentene | Not Available | 2,900 | 1.2 | ND | D1 | 0.4 | | Dichlorodifluoromethane | Not Available | 10,000 | 1.2 | 0.51 | L,D1 | 0.4 | | Ethane | Not Available | Simple Asphyxiant* | 12 | 380 | T,D2 | 5.1 | | Ethylbenzene | 170 | 20,000 | 2.4 | 1.1 | L,D1 | 0.54 | | Ethylene | 270,000 | 500,000 | 2.4 | 0.86 | J,T,D1 | 1 | | Isobutane | Not Available | 33,000 | 2.4 | 0.74 | L,D1 | 0.46 | | Isopentane (2-methylbutane) | 1,300 | 68,000 | 4.8 | 0.34 | J,D1 | 0.54 | | Isoprene | 48 | 20 | 1.2 | 0.08 | J,D1 | 0.54 | Tony Walker et al. Page 10 November 25, 2014 | Lab Sample ID | 1410022-001 | | | | | | |--------------------------------------|-------------------------------|--|----------------------------|------------------------------------|-------|----------------------------| | Compound | Odor AMCV (ppb _v) | Short-Term Health AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | Isopropylbenzene (cumene) | 48 | 500 | 1.2 | ND | D1 | 0.48 | | m & p-Xylene (as mixed isomers) | 80 | 1,700 | 4.8 | 3.6 | L,D1 | 0.54 | | m-Diethylbenzene | 70 | 460 | 2.4 | ND | D1 | 0.54 | | Methyl Chloride (chloromethane) | Not Available | 500 | 1.2 | 0.49 | L,D1 | 0.4 | | Methylcyclohexane | 150 | 4,000 | 2.4 | 0.04 | J,D1 | 0.52 | | Methylcyclopentane | 1,700 | 750 | 2.4 | ND | D1 | 0.54 | | Methylene Chloride (dichloromethane) | 160,000 | 3,500 | 1.2 | 0.06 | J,D1 | 0.28 | | m-Ethyltoluene | 18 | 250 | 1.2 | 0.06 | J,D1 | 0.22 | | n-Butane | 1,200,000 | 92,000 | 2.4 | 1.3 | L,D1 | 0.4 | | n-Decane | 620 | 1,750 | 2.4 | ND | D1 | 0.54 | | n-Heptane | 670 | 850 | 2.4 | 0.03 | J,D1 | 0.5 | | n-Hexane | 1,500 | 1,800 | 2.4 | 0.05 | J,D1 | 0.4 | | n-Nonane | Not Available | 2,000 | 1.2 | ND | D1 | 0.44 | | n-Octane | 1,700 | 750 | 2.4 | 0.01 | J,D1 | 0.38 | | n-Pentane | 1,400 | 68,000 | 4.8 | ND | D1 | 0.54 | | n-Propylbenzene | 48 | 500 | 1.2 | 0.02 | J,D1 | 0.54 | | n-Undecane | 870 | 550 | 2.4 | ND | D1 | 0.54 | | o-Ethyltoluene | 74 | 250 | 2.4 | ND | D1 | 0.26 | | o-Xylene | 380 | 1,700 | 2.4 | 1.4 | L,D1 | 0.54 | | p-Diethylbenzene | 70 | 460 | 1.2 | ND | D1 | 0.54 | | p-Ethyltoluene | 8.1 | 250 | 2.4 | 0.04 | J,D1 | 0.32 | | Propane | 1,500,000 | Simple Asphyxiant* | 2.4 | 16 | T,D1 | 1 | | Propylene | 13,000 | Simple Asphyxiant* | 2.4 | ND | T,D1 | 1 | | Styrene | 25 | 5,100 | 2.4 | ND | D1 | 0.54 | | t-1,3-Dichloropropylene | Not Available | 10 | 1.2 | ND | D1 | 0.4 | | t-2-Butene | 2,100 | 15,000 | 1.2 | ND | D1 | 0.36 | Tony Walker et al. Page 11 November 25, 2014 | Lab Sample ID | 1410022-001 | | | | | | | |------------------------|----------------------------------|---|----------------------------|------------------------------------|-------|----------------------------|--| | Compound | Odor AMCV
(ppb _v) | Short-Term Health
AMCV (ppb _v) | SQL
(ppb _v) | Concentrations (ppb _v) | Flags | SDL
(ppb _v) | | | t-2-Hexene | 140 | 500 | 2.4 | ND | D1 | 0.54 | | | t-2-Pentene | Not Available | 2,600 | 2.4 | ND | D1 | 0.54 | | | Tetrachloroethylene | 770 | 1,000 | 1.2 | 0.01 | J,D1 | 0.48 | | | Toluene | 920 | 4,000 | 1.2 | 0.82 | L,D1 | 0.54 | | | Trichloroethylene | 3,900 | 100 | 1.2 | ND | D1 | 0.58 | | | Trichlorofluoromethane | 5,000 | 10,000 | 1.2 | 0.26 | J,D1 | 0.58 | | | Vinyl Chloride | Not Available | 26,000 | 1.2 | ND | D1 | 0.34 | | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ppbv - Parts per billion by volume. ND - Not detected. NQ - Concentration can not be quantified due to possible interferences or coelutions. SDL - Sample Detection Limit (Limit of Detection adjusted for dilution). SQL – Sample Quantitation Limit (Limit of Quantitation adjusted for dilution). INV - Invalid. J - Reported concentration is below SDL. L - Reported concentration is at or above the SDL and is below the lower limit of quantitation. E - Reported concentration exceeds the upper limit of instrument calibration. M - Result modified from previous result. T - Data was not confirmed by a confirmational analysis. Data is tentatively identified. F - Established acceptance criteria were not met due to factors outside the laboratory's control. H – Not all associated hold time specifications were met. Data may be biased. C - Sample received with a missing or broken custody seal. R - Sample received with a missing or incomplete chain of custody. I - Sample received without a legible unique identifier. G - Sample received in an improper container. U - Sample received with insufficient sample volume. W - Sample received with insufficient preservation. D1 - Sample concentration was calculated using a dilution factor of 4.02. Tony Walker et al. Page 13 November 25, 2014 **Table 2. TCEQ Long-Term Air Monitoring Comparison Values (AMCVs)** Please Note: The long-term AMCVs are provided for informational purposes only because it is scientifically inappropriate to compare short-term monitored values to the long-term AMCV. | Compound | Long-Term Health AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | | |-----------------------------------|---|--------------------------------------|--|--| | 1,1,1-Trichloroethane | 940 | Cyclopentane | 120 | | | 1,1,2,2-Tetrachloroethane | 1 | Cyclopentene | 290 | | | 1,1,2-Trichloroethane | 10 | Dichlorodifluoromethane | 1,000 | | | 1,1-Dichloroethane | 100 | Ethane | Simple Asphyxiant* | | | 1,1-Dichloroethylene | 86 | Ethylbenzene | 450 | | | 1,2,3-Trimethylbenzene | 25 | Ethylene** | 5,300 | | | 1,2,4-Trimethylbenzene | 25 | Isobutane | 2,400 | | | 1,2-Dibromoethane | 0.05 | Isopentane (2-methylbutane) | 8,000 | | | 1,2-Dichloroethane | 1 | Isoprene | 2 | | | 1,2-Dichloropropane | 10 | Isopropylbenzene (cumene) | 50 | | | 1,3,5-Trimethylbenzene | 25 | m & p-Xylene (as mixed isomers) | 140 | | | 1,3-Butadiene | 9.1 | m-Diethylbenzene | 46 | | | 1-Butene | 2,300 | Methyl Chloride (chloromethane) | 50 | | | 1-Pentene | Not Available | Methylcyclohexane | 400 | | | 2,2,4-Trimethylpentane | 75 | Methylcyclopentane | 75 | | | 2,2-Dimethylbutane (Neohexane) | 100 | Methylene Chloride (dichloromethane) | 100 | | | 2,3,4-Trimethylpentane | 75 | m-Ethyltoluene | 25 | | | 2,3-Dimethylbutane | 99 | n-Butane | 2,400 | | | 2,3-Dimethylpentane | 85 | n-Decane | 175 | | | 2,4-Dimethylpentane | 85 | n-Heptane | 85 | | | 2-Chloropentane (as chloroethane) | 24 | n-Hexane | 190 | | | 2-Methyl-1-Pentene +1-Hexene | 50 | n-Nonane | 200 | | Tony Walker et al. Page 14 November 25, 2014 | Compound | Long-Term Health
AMCV (ppb _v) | Compound | Long-Term Health
AMCV (ppb _v) | |---------------------------------|--|-------------------------|--| | 2-Methyl-2-Butene | Not Available | n-Octane | 75 | | 2-Methylheptane | 75 | n-Pentane | 8,000 | | 2-Methylhexane | 75 | n-Propylbenzene | 50 | | 2-Methylpentane (Isohexane) | 85 | n-Undecane | 55 | | 3-Methyl-1-Butene | 800 | o-Ethyltoluene | 25 | | 3-Methylheptane | 75 | o-Xylene | 140 | | 3-Methylhexane | 75 | p-Diethylbenzene | 46 | | 3-Methylpentane | 100 | p-Ethyltoluene | 25 | | 4-Methyl-1-Pentene (as hexene) | 50 | Propane | Simple Asphyxiant* | | Acetylene | 2,500 | Propylene | Simple Asphyxiant* | | Benzene | 1.4 | Styrene | 110 | | Bromomethane (methyl bromide) | 3 | t-1,3-Dichloropropylene | 1 | | c-1,3-Dichloropropylene | 1 | t-2-Butene | 690 | | c-2-Butene | 690 | t-2-Hexene | 50 | | c-2-Hexene | 50 | t-2-Pentene | Not Available | | c-2-Pentene | Not Available | Tetrachloroethylene*** | 3.8 | | Carbon Tetrachloride | 2 | Toluene | 1,100 | | Chlorobenzene (phenyl chloride) | 10 | Trichloroethylene | 10 | | Chloroform (trichloromethane) | 2 | Trichlorofluoromethane | 1,000 | | Cyclohexane | 100 | Vinyl Chloride | 0.45 | ^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ^{**}Long-term vegetation AMCV for Ethylene is 30 ppb. ^{***}Long-term vegetation AMCV for Tetrachloroethylene is 12 ppb.